Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotoxicology ; 101: 102-116, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401688

RESUMO

Parkinson's Disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of midbrain dopaminergic neurons in the substantia nigra part of the brain. Pathology spread to numerous brain regions and cell types suggests that intercellular communication is essential to PD progression. Exosomes mediate intercellular communication between neurons, glia, and other cell types throughout PD-relevant brain regions. However, the mechanism remains unclear, and its implication in PD pathology, is not well understood. In the current study, we explored the role of exosomes in modulating the response to PD-relevant toxicants. In cellular models of PD, neuronal cell-derived exosomes are readily internalized by recipient neuronal cells as intact vesicles. Internalized exosomes in bystander neuronal cells localize to mitochondria and dysregulate mitochondrial functions, leading to cell death under PD stress conditions. NGS analysis of exosomes released by neuronal cells subjected to PD stress conditions showed that levels of specific miRNAs were altered in exosomes under PD stress conditions. Bioinformatic analysis of the miRNA targets revealed enriched pathways related to neuronal processes and morphogenesis, apoptosis and ageing. Levels of two miRNAs, hsa-miR-30a-5p and hsa-miR-181c-5p, were downregulated in exosomes under PD stress conditions. Expression of the identified miRNAs in neuronal cells led to their enrichment in exosomes, and exosome uptake in neuronal cells ameliorated mitochondrial dysfunction induced by PD stress conditions and rescued cell death. In conclusion, loss of enrichment of specific miRNAs, including miR-30a-5p and miR-181c-5p, under PD stress conditions causes mitochondrial dysfunction and neuronal death, and hence may lead to progression of PD.


Assuntos
MicroRNAs , Doenças Mitocondriais , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Morte Celular , Mitocôndrias/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doenças Mitocondriais/metabolismo
2.
FEBS J ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317520

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by progressive loss of dopamine-producing neurons from the substantia nigra region of the brain. Mitochondrial dysfunction is one of the major causes of oxidative stress and neuronal cell death in PD. E3 ubiquitin ligases such as Parkin (PRKN) modulate mitochondrial quality control in PD; however, the role of other E3 ligases associated with mitochondria in the regulation of neuronal cell death in PD has not been explored. The current study investigated the role of TRIM32, RING E3 ligase, in sensitization to oxidative stress-induced neuronal apoptosis. The expression of TRIM32 sensitizes SH-SY5Y dopaminergic cells to rotenone and 6-OHDA-induced neuronal death, whereas the knockdown increased cell viability under PD stress conditions. The turnover of TRIM32 is enhanced under PD stress conditions and is mediated by autophagy. TRIM32 translocation to mitochondria is enhanced under PD stress conditions and localizes on the outer mitochondrial membrane. TRIM32 decreases complex-I assembly and activity as well as mitochondrial reactive oxygen species (ROS) and ATP levels under PD stress. Deletion of the RING domain of TRIM32 enhanced complex I activity and rescued ROS levels and neuronal viability under PD stress conditions. TRIM32 decreases the level of XIAP, and co-expression of XIAP with TRIM32 rescued the PD stress-induced cell death and mitochondrial ROS level. In conclusion, turnover of TRIM32 increases during stress conditions and translocation to mitochondria is enhanced, regulating mitochondrial functions and neuronal apoptosis by modulating the level of XIAP in PD.

3.
Free Radic Biol Med ; 211: 158-170, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104742

RESUMO

Tumor microenvironment (TME) of solid tumors including breast cancer is complex and contains a distinct cytokine pattern including TNF-α, which determines the progression and metastasis of breast tumors. The metastatic potential of triple negative breast cancer subtypes is high as compared to other subtypes of breast cancer. NF-κB is key transcription factor regulating inflammation and mitochondrial bioenergetics including oxidative phosphorylation (OXPHOS) genes which determine its oxidative capacity and generating reducing equivalents for synthesis of key metabolites for proliferating breast cancer cells. The differential metabolic adaptation and OXPHOS function of breast cancer subtypes in inflammatory conditions and its contribution to metastasis is not well understood. Here we demonstrated that different subunits of NF-κB are differentially expressed in subtypes of breast cancer patients. RELA, one of the major subunits in regulation of the NF-κB pathway is positively correlated with high level of TNF-α in breast cancer patients. TNF-α induced NF-κB regulates the expression of LYRM7, an assembly factor for mitochondrial complex III. Downregulation of LYRM7 in MDA-MB-231 cells decreases mitochondrial super complex assembly and enhances ROS levels, which increases the invasion and migration potential of these cells. Further, in vivo studies using Infliximab, a monoclonal antibody against TNF-α showed decreased expression of LYRM7 in tumor tissue. Large scale breast cancer databases and human patient samples revealed that LYRM7 levels decreased in triple negative breast cancer patients compared to other subtypes and is determinant of survival outcome in patients. Our results indicate that TNF-α induced NF-κB is a critical regulator of LYRM7, a major factor for modulating mitochondrial functions under inflammatory conditions, which determines growth and survival of breast cancer cells.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
4.
Apoptosis ; 27(11-12): 961-978, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018392

RESUMO

Triple-negative breast cancer is aggressive and metastatic breast cancer type and shows immune evasion, drug resistance, relapse and poor survival. Anti-cancer therapy like ionizing radiation and chemotherapeutic drug majorly induces DNA damage hence, alteration in DNA damage repair and downstream pathways may contribute to tumor cell survival. DNA damage during chemotherapy is sensed by cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes (STING), which determines the anti-tumor immune response by modulating the expression of programmed cell death ligand-1 (PD-L1), immune suppressor, in the tumor microenvironment. Triple-negative breast cancer cells are cGAS-STING positive and modulation of this pathway during DNA damage response for survival and immune escape mechanism is not well understood. Here we demonstrate that doxorubicin-mediated DNA damage induces STING mediated NF-κB activation in triple-negative as compared to ER/PR positive breast cancer cells. STING-mediated NF-κB induces the expression of IL-6 in triple-negative breast cancer cells and activates pSTAT3, which enhances cell survival and PD-L1 expression. Doxorubicin and STAT3 inhibitor act synergistically and inhibit cell survival and clonogenicity in triple-negative breast cancer cells. Knockdown of STING in triple-negative breast cancer cells enhances CD8 mediated immune cell death of breast cancer cells. The combinatorial treatment of triple-negative breast cells with doxorubicin and STAT3 inhibitor reduces PD-L1 expression and activates immune cell-mediated cancer cell death. Further STING and IL-6 levels show a positive correlation in breast cancer patients and poor survival outcomes. The study here strongly suggests that STING mediated activation of NF-κB enhances IL-6 mediated STAT3 in triple-negative breast cancer cells which induces cell survival and immune-suppressive mechanism.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Apoptose , Antígeno B7-H1 , Dano ao DNA/genética , Doxorrubicina/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Recidiva Local de Neoplasia , NF-kappa B/genética , NF-kappa B/metabolismo , Nucleotidiltransferases , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral
5.
Cell Signal ; 91: 110210, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34871740

RESUMO

Ubiquitin E3-ligases are recruited at different steps of TNF-α-induced NF-κB activation; however, their role in temporal regulation of the pathway remains elusive. The study systematically identified TRIMs as potential feedback regulators of the TNF-α-induced NF-κB pathway. We further observed that TRIM15 is "late" response TNF-α-induced gene and inhibits the TNF-α-induced NF-κB pathway in several human cell lines. TRIM15 promotes turnover of K63-linked ubiquitin chains in a PRY/SPRY domain-dependent manner. TRIM15 interacts with TAK1 and inhibits its K63-linked ubiquitination, thus NF-κB activity. Further, TRIM15 interacts with TRIM8 and inhibits cytosolic translocation to antagonize TRIM8 modualted NF-κB. TRIM8 and TRIM15 also show functionally inverse correlation in psoriasis condition. In conclusion, TRIM15 is TNF-α-induced late response gene and inhibits TNF-α induced NF-κB pathway hence a feedback modulator to keep the proinflammatory NF-κB pathway under control.


Assuntos
NF-kappa B , Ubiquitina-Proteína Ligases , Proteínas de Transporte/metabolismo , Humanos , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Cell Mol Life Sci ; 78(17-18): 6069-6086, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34283248

RESUMO

TNF-α-induced NF-κB pathway is an essential component of innate and adaptive immune pathway, and it is tightly regulated by various post-translational modifications including ubiquitination. Oscillations in NF-κB activation and temporal gene expression are emerging as critical determinants of inflammatory response, however, the regulators of unique outcomes in different patho-physiological conditions are not well understood. Tripartite Motif-containing proteins (TRIMs) are RING domain-containing E3 ligases involved in the regulation of cellular homeostasis, metabolism, cell death, inflammation, and host defence. Emerging reports suggest that TRIMs are recruited at different steps of TNF-α-induced NF-κB pathway and modulate via their E3 ligase activity. TRIMs show synergy and antagonism in the regulation of the NF-κB pathway and also regulate it in a feedback manner. TRIMs also regulate pattern recognition receptors (PRRs) mediated inflammatory pathways and may have evolved to directly regulate a specific arm of immune signalling. The review emphasizes TRIM-mediated ubiquitination and modulation of TNF-α-regulated temporal and NF-κB signaling and its possible impact on unique transcriptional and functional outcomes.


Assuntos
NF-kappa B/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
7.
Apoptosis ; 26(5-6): 293-306, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33840002

RESUMO

Immune adaptor protein like STING/MITA regulate innate immune response and plays a critical role in inflammation in the tumor microenvironment and regulation of metastasis including breast cancer. Chromosomal instability in highly metastatic cells releases fragmented chromosomal parts in the cytoplasm, hence the activation of STING via an increased level of cyclic dinucleotides (cDNs) synthesized by cGMP-AMP synthase (cGAS). Cyclic dinucleotides 2' 3'-cGAMP and it's analog can potentially activate STING mediated pathways leading to nuclear translocation of p65 and IRF-3 and transcription of inflammatory genes. The differential modulation of STING pathway via 2' 3'-cGAMP and its analog and its implication in breast tumorigenesis is still not well explored. In the current study, we demonstrated that c-di-AMP can activate type-1 IFN response in ER negative breast cancer cell lines which correlate with STING expression. c-di-AMP binds to STING and activates downstream IFN pathways in STING positive metastatic MDA-MB-231/MX-1 cells. Prolonged treatment of c-di-AMP induces cell death in STING positive metastatic MDA-MB-231/MX-1 cells mediated by IRF-3. c-di-AMP induces IRF-3 translocation to mitochondria and initiates Caspase-9 mediated cell death and inhibits clonogenicity of triple-negative breast cancer cells. This study suggests that c-di-AMP can activate and modulates STING pathway to induce mitochondrial mediated apoptosis in estrogen-receptor negative breast cancer cells.


Assuntos
Morte Celular/efeitos dos fármacos , Fosfatos de Dinucleosídeos/farmacologia , Proteínas de Membrana/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Fosfatos de Dinucleosídeos/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Ligação Proteica , Receptores de Progesterona/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia
8.
Cancer Metab ; 9(1): 19, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926547

RESUMO

BACKGROUND: Tumor necrosis factor-α (TNF-α) is an immunostimulatory cytokine that is consistently high in the breast tumor microenvironment (TME); however, its differential role in mitochondrial functions and cell survival in ER/PR +ve and ER/PR -ve breast cancer cells is not well understood. METHODS: In the current study, we investigated TNF-α modulated mitochondrial proteome using high-resolution mass spectrometry and identified the differentially expressed proteins in two different breast cancer cell lines, ER/PR positive cell line; luminal, MCF-7 and ER/PR negative cell line; basal-like, MDA-MB-231 and explored its implication in regulating the tumorigenic potential of breast cancer cells. We also compared the activity of mitochondrial complexes, ATP, and ROS levels between MCF-7 and MDA-MB-231 in the presence of TNF-α. We used Tumor Immune Estimation Resource (TIMER) webserver to analyze the correlation between TNF-α and mitochondrial proteins in basal and luminal breast cancer patients. Kaplan-Meier method was used to analyze the correlation between mitochondrial protein expression and survival of breast cancer patients. RESULTS: The proteome analysis revealed that TNF-α differentially altered the level of critical proteins of mitochondrial respiratory chain complexes both in MCF-7 and MDA-MB-231, which correlated with differential assembly and activity of mitochondrial ETC complexes. The inhibition of the glycolytic pathway in the presence of TNF-α showed that glycolysis is indispensable for the proliferation and clonogenic ability of MDA-MB-231 cells (ER/PR -ve) as compared to MCF-7 cells (ER/PR +ve). The TIMER database showed a negative correlation between the expressions of TNF-α and key regulators of mitochondrial OXPHOS complexes in basal breast vs lobular carcinoma. Conversely, patient survival analysis showed an improved relapse-free survival with increased expression of identified proteins of ETC complexes and survival of the breast cancer patients. CONCLUSION: The evidence presented in our study convincingly demonstrates that TNF-α regulates the survival and proliferation of aggressive tumor cells by modulating the levels of critical assembly factors and subunits involved in mitochondrial respiratory chain supercomplexes organization and function. This favors the rewiring of mitochondrial metabolism towards anaplerosis to support the survival and proliferation of breast cancer cells. Collectively, the results strongly suggest that TNF-α differentially regulates metabolic adaptation in ER/PR +ve (MCF-7) and ER/PR -ve (MDA-MB-231) cells by modulating the mitochondrial supercomplex assembly and activity.

9.
Biochim Biophys Acta Mol Basis Dis ; 1867(7): 166066, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418035

RESUMO

TRIM proteins are RING domain-containing modular ubiquitin ligases, unique due to their stimuli specific expression, localization, and turnover. The TRIM family consists of more than 76 proteins, including the TRIM-NHL sub-family which possesses RNA binding ability along with the inherent E3 Ligase activity, hence can be classified as a unique class of RNA Binding Ubiquitin Ligases (RBULs). Having these two abilities, TRIM-NHL proteins can play important role in a wide variety of cellular processes and their dysregulation can lead to complex and systemic pathological conditions. Increasing evidence suggests that TRIM-NHL proteins regulate RNA at the transcriptional and post-transcriptional level having implications in differentiation, development, and many pathological conditions. This review explores the evolving role of TRIM-NHL proteins as TRIM-RBULs, their ubiquitin ligase and RNA binding ability regulating cellular processes, and their possible role in different pathophysiological conditions.


Assuntos
Doenças Genéticas Inatas/patologia , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Doenças Genéticas Inatas/metabolismo , Humanos , Ubiquitina , Ubiquitinação
10.
Free Radic Biol Med ; 165: 100-110, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497798

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive neurodegenerative disorder caused by an expansion of 55 to 200 CGG repeats located within 5'UTR of FMR1.These CGG repeats are transcribed into RNAs, which sequester several RNA binding proteins and alter the processing of miRNAs. CGG repeats are also translated into a toxic polyglycine-containing protein, FMRpolyG, that affects mitochondrial and nuclear functions reported in cell and animal models and patient studies. Nuclear-encoded small non-coding RNAs, including miRNAs, are transported to mitochondria; however, the role of mitochondrial miRNAs in FXTAS pathogenesis is not understood. Here, we analyzed mitochondrial miRNAs from HEK293 cells expressing expanded CGG repeats and their implication in the regulation of mitochondrial functions. The analysis of next generation sequencing (NGS) data of small RNAs from HEK293 cells expressing CGG premutation showed decreased level of cellular miRNAs and an altered pattern of association of miRNAs with mitochondria (mito-miRs). Among such mito-miRs, miR-320a was highly enriched in mitoplast and RNA immunoprecipitation of Ago2 (Argonaute-2) followed by Droplet digital PCR (ddPCR)suggested that miR-320a may form a complex with Ago2 and mitotranscripts. Finally, transfection of miR-320a mimic in cells expressing CGG permutation recovers mitochondrial functions and rescues cell death. Overall, this work reveals an altered translocation of miRNAs to mitochondria and the role of miR-320a in FXTAS pathology.


Assuntos
MicroRNAs , Tremor , Animais , Ataxia , Morte Celular , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil , Células HEK293 , Humanos , MicroRNAs/genética , Mitocôndrias/genética
11.
Mol Neurobiol ; 58(4): 1819-1833, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33404982

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta region of the brain. The main pathological hallmark involves cytoplasmic inclusions of α-synuclein and mitochondrial dysfunction, which is observed in other part of the central nervous system other than SN suggesting the spread of pathogenesis to bystander neurons. The inter-neuronal communication through exosomes may play an important role in the spread of the disease; however, the mechanisms are not well elucidated. Mitochondria and its role in inter-organellar crosstalk with multivesicular body (MVB) and lysosome and its role in modulation of exosome release in PD is not well understood. In the current study, we investigated the mitochondria-lysosome crosstalk modulating the exosome release in neuronal and glial cells. We observed that PD stress showed enhanced release of exosomes in dopaminergic neurons and glial cells. The PD stress condition in these cells showed fragmented network and mitochondrial dysfunction which further leads to functional deficit of lysosomes and hence inhibition of autophagy flux. Neuronal and glial cells treated with rapamycin showed enhanced autophagy and inhibited the exosomal release. The results here suggest that maintenance of mitochondrial function is important for the lysosomal function and hence exosomal release which is important for the pathogenesis of PD.


Assuntos
Exossomos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Estresse Fisiológico , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Exossomos/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Sirolimo/farmacologia , Estresse Fisiológico/efeitos dos fármacos
12.
Cell Signal ; 76: 109777, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918979

RESUMO

Emerging evidence suggests that ubiquitin mediated post translational modification is a critical regulatory process involved in diverse cellular pathways including cell death. During ubiquitination, E3 ligases recognize target proteins and determine the topology of ubiquitin chains. Recruitment of E3 ligases to targets proteins under stress conditions including oxidative stress and their implication in cell death have not been systemically explored. In the present study, we characterized the role of TRIM32 as an E3 ligase in regulation of oxidative stress induced cell death. TRIM32 is ubiquitously expressed in cell lines of different origin and form cytoplasmic speckle like structures that transiently interact with mitochondria under oxidative stress conditions. The ectopic expression of TRIM32 sensitizes cell death induced by oxidative stress whereas TRIM32 knockdown shows a protective effect. The turnover of TRIM32 is enhanced during oxidative stress and its expression induces ROS generation, loss of mitochondrial transmembrane potential and decrease in complex-I activity. The pro-apoptotic effect was rescued by pan-caspase inhibitor or antioxidant treatment. E3 ligase activity of TRIM32 is essential for oxidative stress induced apoptotic cell death. Furthermore, TRIM32 decreases X-linked inhibitor of apoptosis (XIAP) level and overexpression of XIAP rescued cells from TRIM32 mediated oxidative stress and cell death. Overall, the results of this study provide the first evidence supporting the role of TRIM32 in regulating oxidative stress induced cell death, which has implications in numerous pathological conditions including cancer and neurodegeneration.


Assuntos
Morte Celular , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/fisiologia , Proteínas com Motivo Tripartido/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial
13.
Mol Cell Biochem ; 461(1-2): 23-36, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31309409

RESUMO

Antibiotics are the front-line treatment against many bacterial infectious diseases in human. The excessive and long-term use of antibiotics in human cause several side effects. It is important to understand the underlying molecular mechanisms of action of antibiotics in the host cell to avoid the side effects due to the prevalent uses. In the current study, we investigated the crosstalk between mitochondria and lysosomes in the presence of widely used antibiotics: erythromycin (ERM) and clindamycin (CLDM), which target the 50S subunit of bacterial ribosomes. We report here that both ERM and CLDM induced caspase activation and cell death in several different human cell lines. The activity of the mitochondrial respiratory chain was compromised in the presence of ERM and CLDM leading to bioenergetic crisis and generation of reactive oxygen species. Antibiotics treatment impaired autophagy flux and lysosome numbers, resulting in decreased removal of damaged mitochondria through mitophagy, hence accumulation of defective mitochondria. We further show that over-expression of transcription factor EB (TFEB) increased the lysosome number, restored mitochondrial function and rescued ERM- and CLDM-induced cell death. These studies indicate that antibiotics alter mitochondria and lysosome interactions leading to apoptotsis and may develop a novel approach for targeting inter-organelle crosstalk to limit deleterious antibiotic-induced side effects.


Assuntos
Apoptose/efeitos dos fármacos , Clindamicina/farmacologia , Eritromicina/farmacologia , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Antibacterianos/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular , Humanos , Lisossomos/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1379-1388, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771487

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by an expansion of 55 to 200 CGG repeats (premutation) in FMR1. These CGG repeats are Repeat Associated non-ATG (RAN) translated into a small and pathogenic protein, FMRpolyG. The cellular and molecular mechanisms of FMRpolyG toxicity are unclear. Various mitochondrial dysfunctions have been observed in FXTAS patients and animal models. However, the causes of these mitochondrial alterations are not well understood. In the current study, we investigated interaction of FMRpolyG with mitochondria and its role in modulating mitochondrial functions. Beside nuclear inclusions, FMRpolyG also formed small cytosolic aggregates that interact with mitochondria both in cell and mouse model of FXTAS. Importantly, expression of FMRpolyG reduces ATP levels, mitochondrial transmembrane potential, mitochondrial supercomplexes assemblies and activities and expression of mitochondrial DNA encoded transcripts in cell and animal model of FXTAS, as well as in FXTAS patient brain tissues. Overall, these results suggest that FMRpolyG alters mitochondrial functions, bioenergetics and initiates cell death. The further study in this direction will help to establish the role of mitochondria in FXTAS conditions.


Assuntos
Ataxia/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Mitocôndrias/genética , RNA Mensageiro/genética , Tremor/genética , Expansão das Repetições de Trinucleotídeos , Trifosfato de Adenosina/biossíntese , Idoso , Idoso de 80 Anos ou mais , Animais , Ataxia/metabolismo , Ataxia/patologia , Linhagem Celular Tumoral , Cerebelo/metabolismo , Cerebelo/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/genética , Proteína do X Frágil da Deficiência Intelectual/química , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Expressão Gênica , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Agregados Proteicos/genética , RNA Mensageiro/metabolismo , Tremor/metabolismo , Tremor/patologia
15.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1460-1476, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30802640

RESUMO

An increased level of proinflammatory cytokines, including TNF-α in tumor microenvironment regulates the bioenergetic capacity, immune evasion and survival of cancer cells. Emerging evidences suggest that mitochondrial immune signaling proteins modulates mitochondrial bioenergetic capacity, in addition to the regulation of innate immune response. The optimal oxidative phosphorylation (OxPhos) capacity is required for the maintenance of functional lysosomes and autophagy flux. NLRX1, a mitochondrial NOD family receptor protein, regulates mitochondrial function during apoptosis and tissue injury. However, its role in regulation of mitochondrial and lysosomal function to modulate autophagy flux during inflammatory conditions is not understood. In the current study, we investigated the role of NLRX1 in modulating TNF-α induced autophagy flux and mitochondrial turnover and its implication in regulating the invasive and metastatic capability of breast cancer cells. Expression analyses of clinical breast cancer samples and meta-analysis of multiple public databases revealed that NLRX1 expression is significantly increased in basal-like and metastatic breast carcinoma as compared to non-basal-like and primary breast cancer. Depletion of NLRX1 expression in triple-negative breast cancer cells, altered the organization and activity of OxPhos complexes in presence of TNF-α. NLRX1 depletion further impaired lysosomal function and hence the turnover of damaged mitochondria through mitophagy in presence of TNF-α. Importantly, loss of NLRX1 decreased OxPhos-dependent cell proliferation and migration ability of triple-negative breast cancer cells in presence of TNF-α. These evidences suggest an essential role of NLRX1 in maintaining the crosstalk of mitochondrial metabolism and lysosomal function to regulate invasion and metastasis capability of breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Fator de Necrose Tumoral alfa/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Metástase Linfática , Lisossomos/efeitos dos fármacos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Invasividade Neoplásica , Fosforilação Oxidativa/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Microambiente Tumoral/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
16.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1260-1276, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932989

RESUMO

The role of mitochondria is emerging in regulation of innate immunity, inflammation and cell death beyond its primary role in energy metabolism. Mitochondria act as molecular platform for immune adaptor protein complexes, which participate in innate immune signaling. The mitochondrial localized immune adaptors are widely expressed in non-immune cells, however their role in regulation of mitochondrial function and metabolic adaption is not well understood. NLRX1, a member of NOD family receptor proteins, localizes to mitochondria and is a negative regulator of anti-viral signaling. However, the submitochondrial localization of NLRX1 and its implication in regulation of mitochondrial functions remains elusive. Here, we confirm that NLRX1 translocates to mitochondrial matrix and associates with mitochondrial FASTKD5 (Fas-activated serine-threonine kinase family protein-5), a bonafide component of mitochondrial RNA granules (MRGs). The association of NLRX1 with FASTKD5 negatively regulates the processing of mitochondrial genome encoded transcripts for key components of complex-I and complex-IV, to modulate its activity and supercomplexes formation. The evidences, here, suggest an important role of NLRX1 in regulating the post-transcriptional processing of mitochondrial RNA, which may have an important implication in bioenergetic adaptation during metabolic stress, oncogenic transformation and innate immunity.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo , Proteínas de Ligação a RNA/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Transporte Proteico , RNA Mitocondrial/genética
17.
Cell Signal ; 48: 1-12, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29678622

RESUMO

In cancer patients, treatment modalities like chemotherapy and radiation exert their anticancer effects by inducing DNA damage. The cancer cells can survive under genotoxic stress by inducing DNA damage response (DDR) or can undergo cell death. The process of autophagy is emerging as crucial regulator of cell survival during different stress conditions. Post translational modification through ubiquitin plays an essential role in DDR during genotoxic stress conditions. Ubiquitin ligases regulate autophagy and cell death pathways however their role during genotoxic stress conditions is not understood. In the current study we identified TRIM8, RING E3 Ligase, as a novel regulator of autophagy during DDR. TRIM8 regulates lysosomal biogenesis and autophagy flux. The turnover of TRIM8 is high and is stabilized during genotoxic stress conditions. TRIM8 regulated autophagy is essential for its cytoprotective role during genotoxic stress induced cell death. TRIM8 stabilizes the turnover of XIAP during genotoxic stress and forms complex with XIAP and caspase-3 to inhibit its activation in presence of etoposide. TRIM8 mediated autophagy promotes degradation of cleaved caspase-3 subunits. This study described TRIM8, as a novel regulator of DDR-autophagy crosstalk, which may play role in survival of cancer cells in presence of genotoxic agents.


Assuntos
Autofagia , Proteínas de Transporte/fisiologia , Caspase 3/metabolismo , Dano ao DNA , Proteínas do Tecido Nervoso/fisiologia , Sobrevivência Celular , Células HEK293 , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
18.
Mol Neurobiol ; 55(6): 4689-4701, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28710704

RESUMO

Parkinson's disease (PD) is complex neurological disorder and is prevalent in the elderly population. This is primarily due to loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) region of the brain. The modulators of the selective loss of dopaminergic neurons in PD are still not well understood. The small non-coding RNAs specifically miRNAs fine-tune the protein levels by post-transcriptional gene regulation. The role of miRNAs in PD pathogenesis is still not well characterized. In the current study, we identified the miRNA expression pattern in 6-OHDA-induced PD stress condition in SH-SY5Y, dopaminergic neuronal cell line. The targets of top 5 miRNAs both up- and down regulated were analyzed by using StarBase. The putative pathways of identified miRNAs included neurotrophin signaling, neuronal processes, mTOR, and cell death. The level of miR-5701 was significantly downregulated in the presence of 6-OHDA. The putative targets of miR-5701 miRNA include genes involved in lysosomal biogenesis and mitochondrial quality control. The transfection of miR-5701 mimic decreased the transcript level of VCP, LAPTM4A, and ATP6V0D1. The expression of miR-5701 mimic induces mitochondrial dysfunction, defect in autophagy flux, and further sensitizes SH-SY5Y cells to 6-OHDA-induced cell death. To our knowledge, the evidence in the current study demonstrated the dysregulation of specific pattern of miRNAs in PD stress conditions. We further characterized the role of miR-5701, a novel miRNA, as a potential regulator of the mitochondrial and lysosomal function determining the fate of neurons which has important implication in the pathogenesis of PD.


Assuntos
Lisossomos/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/genética , Estresse Fisiológico/genética , Apoptose/genética , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Humanos , Fusão de Membrana , MicroRNAs/genética , Modelos Biológicos , Neurônios/metabolismo , Neurônios/patologia , Oxidopamina , Doença de Parkinson/patologia
19.
Cell Signal ; 35: 73-83, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28366813

RESUMO

The crosstalk between inflammation and autophagy is an emerging phenomenon observed during tumorigenesis. Activation of NF-κB and IRF3 plays a key role in the regulation of cytokines that are involved in tumor growth and progression. The genes of innate immunity are known to regulate the master transcription factors like NF-κB and IRF3. Innate immunity pathways at the same time regulate the genes of the autophagy pathway which are essential for tumor cell metabolism. In the current study, we studied the role of MITA (Mediator of IRF3 Activation), a regulator of innate immunity, in the regulation of autophagy and its implication in cell death of breast cancer cells. Here, we report that MITA inhibits the fusion of autophagosome with lysosome as evident from different autophagy flux assays. The expression of MITA induces the translocation of p62 and NDP52 to mitochondria which further recruits LC3 for autophagosome formation. The expression of MITA decreased mitochondrial number and enhances mitochondrial ROS by increasing complex-I activity. The enhancement of autophagy flux with rapamycin or TFEB expression normalized MITA induced cell death. The evidences clearly show that MITA regulates autophagy flux and modulates mitochondrial turnover through mitophagy.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Inflamação/genética , Fator Regulador 3 de Interferon/genética , Proteínas de Membrana/genética , Autofagossomos/metabolismo , Autofagia/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imunidade Inata/genética , Inflamação/metabolismo , Inflamação/patologia , Fator Regulador 3 de Interferon/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitofagia/genética , NF-kappa B/genética , Transdução de Sinais/genética , Sirolimo/administração & dosagem
20.
J Mol Med (Berl) ; 95(6): 641-651, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28220193

RESUMO

The modulation of mitochondrial functions is important for maintaining cellular homeostasis. Mitochondria essentially depend on the import of RNAs and proteins encoded by the nuclear genome. MicroRNAs encoded in the nucleus can translocate to mitochondria and target the genome, affecting mitochondrial function. Here, we analyzed the role of miR-4485 in the regulation of mitochondrial functions. We showed that miR-4485 translocated to mitochondria where its levels varied in response to different stress conditions. A direct binding of miR-4485 to mitochondrial 16S rRNA was demonstrated. MiR-4485 regulated the processing of pre-rRNA at the 16S rRNA-ND1 junction and the translation of downstream transcripts. MiR-4485 modulated mitochondrial complex I activity, the production of ATP, ROS levels, caspase-3/7 activation, and apoptosis. Transfection of a miR-4485 mimic downregulated the expression of regulatory glycolytic pathway genes and reduced the clonogenic ability of breast cancer cells. Ectopic expression of miR-4485 in MDA-MB-231 breast carcinoma cells decreased the tumorigenicity in a nude mouse xenograft model. Furthermore, levels of both precursor and mature miR-4485 are decreased in tumor tissue of breast cancer patients. We conclude that the mitochondria-targeted miR-4485 may act as a tumor suppressor in breast carcinoma cells by negatively regulating mitochondrial RNA processing and mitochondrial functions.


Assuntos
Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , RNA Ribossômico 16S/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular , Humanos , Camundongos Nus , Transcitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...